

Spotlob

Spotlob is a package to provide a simple, yet flexible
and fast workflow to measure properties of features in
images for scientific purposes.

It provides implementations for some use cases but can
be easily tuned and be extended towards specific applications.
Jupyter notebook widgets can be used to quickly find a
set of algorithms and parameters that work for a given
image and should also work for similar images.

The set of parameters and algorithms are stored as a
pipeline which can be restored and distributed and
then be applied to a possibly large set of images.
This way, standard routines for repetitive and comparable
measurements for a defined type of images can be forged
into a small and portable file.

When it’s helpful

It is meant to be used in a scenario where a detection method
has to be applied repetetively onto a large set of similar images,
but the exact parameters are not clear.
If your set of tasks can be done by a collection of opencv-function
calls, that need tweaking and you wish to have a GUI to do that,
but without to lose scripting options, spotlob is for you.

If you already have a couple of working python algorithms and
want to have a GUI for them to play around, use spotlob.

If you need to evaluate some images and you don’t know which
of the thousand parameters of an algorithm work best, you might be
able to find the right ones faster with spotlob.

[image: Spotlob jupyter widget]

Usage example

from spotlob.spim import Spim
from spotlob.defaults import default_pipeline

my_spim = Spim.from_file("image.jpg", cached=True)
my_pipe = default_pipeline()

result_spim = my_pipe.apply_all_steps(my_spim)

print(result_spim.get_data())

What it’s not

Spotlob is not a complete feature detection library and it does
not solve a detection problem, that has not already been solved
elsewhere.
It is not an alternative to opencv or scikit-image, but
rather builds on top of it.
At the moment it covers only a tiny fraction of what is possible
with these libraries, but it tries to make it easy for the
reader to use these (or any other python image processing library)
within the spotlob workflow.

Although it might work with machine learning algorithms, it is
not tuned towards this usage and it is not designed with this
application in mind.

Installation

Install with pip

pip install spotlob

Further topics

	Basic workflow
	1. Tweak parameters using the notebook

	2. Store and reload a pipeline

	3. Batch processing

	Priciple of operation
	The Spim and its stages

	The processes

	The spotlob pipeline

	Extending functionality
	Example using a decorator

	Structures
	Spim

	Process

	Pipeline

	Parameters

	Batch processing

	Default Pipeline

Indices and tables

	Index

	Module Index

	Search Page

Basic workflow

Spotlob can be used in various ways: as a library to be integrated
in another software, as a framework for development of a image detection
task or as a software for semi-automated feature detection for
easy up to moderately difficult detection tasks. The following suggested
workflow adresses the latter.

1. Tweak parameters using the notebook

Finding a parameter set for an arbitrary feature detection task can be
challenging. The approach of spotlob is to use the interactive features
of Jupyter to facilitate the tweaking of parameters towards a detection.
If you have Jupyter installed, open the notebooks/simple gui.ipynb notebook
file. Insert the path the image that you wish to analyze:

filename = "path/to/your/file.jpg"

Then run all the cells up to show_gui(gui). An interactive image preview
should appear an you can play around with the sliders. A change of
parameter values will be reflected as a preview. Once you press Evaluate,
the contours are analyzed.

[image: _images/demo.gif]
The result of the analysis can be requested as a dataframe with

gui.results()

2. Store and reload a pipeline

The pipeline holds all the information of the detection - applying the
same pipeline on the same image should always yield the same results.
A pipeline can be saved to a file, to repeat the same detection later.

To save the parameters and selection of processes, that has been
used in the gui, access the pipeline object through the gui.pipeline field
and then store it:

mypipe = gui.pipeline
mypipe.save("my_pipe.pipe")

To restore a saved pipeline object

from spotlob.pipeline import Pipeline

restored_pipe = Pipeline.from_file("my_pipe.pipe")

3. Batch processing

If you have multiple image files, that you wish to evaluate all the same way,
you can use the batch module to apply a saved pipeline on all
of them and get the results collected in a single dataframe.

from spotlob.batch import batchprocess

results = batchprocess("my_pipe.pipe",
 ["file1.jpg",... , "fileN.jpg"],
 multiprocessing=True)

If the multiprocessing parameter is set True, all available cpu cores
are used for parallel execution, giving a significant speedup on
multi-core systems.

Priciple of operation

The Spim and its stages

A Spim is the object holding the images and metadata.
It has methods, that return a Spim of the next stage.
For example, a blank, empty Spim can be created and is then
in the stage SpimStage.new. It contains only the information
where to find the image file. If Spim.read(Writer) is called,
a new Spim is returned, which contains the image data and is at
stage SpimStage.loaded.

Here is a list of the stages that a Spim can be in and in between,
the methods that return a Spim of the next stage.

strict digraph {
 node [shape=box, width=2]

 0 [label="new", target="_top"];
 1 [label="loaded"];
 2 [label="converted"];
 3 [label="preprocessed", below=2];
 4 [label="binarized", below=1];
 5 [label="postprocessed", below=0];
 6 [label="features_extracted"];
 7 [label="features_filtered"];
 8 [label="analyzed"];
 9 [label="stored"];

 {rank=same;
 0 -> 1 [label="read"];
 1 -> 2 [label="convert"];
 }
 2 -> 3 [label="preprocess"];
 {rank=same;
 4 -> 3 [label="binarize", dir="back"];
 5 -> 4 [label="postprocess", dir="back"];
 }
 5 -> 6 [label="extract_features"];
 {rank=same;
 6 -> 7 [label="filter_features"];
 7 -> 8 [label="analyze"];
 }
 8 -> 9 [label="store"];
}

With every step, information is collected. A spim at a later stage
does not duplicate the image data from former stages. However, if this
data is still needed, it can contain a reference to its predecessors.

The processes

The detection of features within an image with spotlob is split up into
an abstract but fixed sequence of processes. Any of these process steps is
applied onto a Spim and returns a new Spim. The new Spim contains the
information added by the process step.

digraph seq {
 rankdir="LR";
 "spim1" -> "spim2" [label="spim1.function(process)"];
}

For example, a Spim at stage SpimStage.loaded can be converted, using
a concrete subclass of Converter, named process_opencv.GreyscaleConverter
in the following way:

from spotlob.defaults import load_image
from spotlob.process_opencv import GreyscaleConverter

loaded_spim = load_image("color_image.jpg")
my_converter = GreyscaleConverter()
converted_spim = loaded_spim.convert(my_converter)

Any process step corresponds to one input stage and
one method of Spim to use it with

	input stage

	Spim method

	SpotlobProcessStep
subclass

	new

	read

	Reader

	loaded

	convert

	Converter

	converted

	preprocess

	Preprocessor

	preprocessed

	binarize

	Binarization

	binarized

	postprocess

	Postprocessor

	postprocessed

	extract_features

	FeatureExtractor

	features_extracted

	filter_features

	FeatureFilter

	features_filtered

	analyze

	Analysis

	analyzed

	store

	Writer

	stored

	
	

For every function of Spim that returns another Spim at
a further stage, there is a subclass of SpotlobProcessStep,
that can be used as super class for an concrete implementation
of that step. The return type of a SpotlobProcessStep.apply
call is different depending on the type of process. The Spim
internally passes the modified data to the new Spim created
through the process.

	
class spotlob.process_steps.Reader(function, parameters, add_to_register=True)[source]

	A reader loads the image data from storage into memory.
apply returns an image

	
class spotlob.process_steps.Converter(function, parameters, add_to_register=True)[source]

	A converter converts a color image to a greyscale image.
apply returns a greyscale image

	
class spotlob.process_steps.Preprocessor(function, parameters, add_to_register=True)[source]

	Preprocessing is applied onto a grey image to prepare for
binarization, for example by cleaning the image from unwanted
features.
apply returns a greyscale image

	
class spotlob.process_steps.Binarization(function, parameters, add_to_register=True)[source]

	Turns a greyscale image into a black-and-white or binary image.
apply returns a greyscale image

	
class spotlob.process_steps.Postprocessor(function, parameters, add_to_register=True)[source]

	Postprocessing is done on a binary image to facilitate the
detection.
apply returns a greyscale image

	
class spotlob.process_steps.FeatureFinder(function, parameters, add_to_register=True)[source]

	The FeatureFinder tries to find contours in a binary image.

apply returns contours

	
class spotlob.process_steps.FeatureFilter(function, parameters, add_to_register=True)[source]

	The FeatureFilter can reduce the number of detected features
by analyzing them.

apply returns contours

	
class spotlob.process_steps.Analysis(function, parameters, add_to_register=True, extended_output=True)[source]

	An Analysis class evaluates the metadata (including contours) and
yields its results as a dataframe.

apply returns DataFrame

The spotlob pipeline

The pipeline structure is used to define a sequence of processes
to be applied one after another onto a spim, to automate a
detection task consisting of multiple process steps.

	
class spotlob.pipeline.Pipeline(processes)[source]

	A pipeline is a sequence of processes, that can be applied one after
another.
The processes are stored in a Dictionary, along with the SpimStage at which
they can be applied. The pipeline can be applied completely using the
apply_all_steps method or partially using the apply_from_stage_to_stage
method.

Extending functionality

The register is meant to be used to keep track of available
process steps. Using decorators, a function can be internally
turned into a SpotlobProcessStep subclass, to be used
within a Pipeline. This way, using only minimal code,
new functionality can be added to Spotlob and directly used
within its workflow

Example using a decorator

Create a process register

from spotlob.register import ProcessRegister
register = ProcessRegister()

Create an alternative function, that should replace a single
SpotlobProcessStep. Here, a binarization function is defined,
using upper and lower value boundaries, with numpy.

import numpy as np

def my_threshold(image, lower_threshold, upper_threshold, invert):
 out = np.logical_and(image > lower_threshold,
 image < upper_threshold)
 out = out.astype(np.uint8)*255
 if invert:
 out = ~out
 return out

To add this function to the register, use the methods of
ProcessRegister as decorators, giving a list of parameter
specifications

@register.binarization_plugin([("lower_threshold",(0,255,100)),
 ("upper_threshold",(0,255,200)),
 ("invert", True)])
def my_threshold(image, lower_threshold, upper_threshold, invert):
 out = np.logical_and(image > lower_threshold,
 image < upper_threshold)
 out = out.astype(np.uint8)*255
 if invert:
 out = ~out
 return out

Structures

Spim

A Spim is the object holding the images and metadata.
It has methods, that return a Spim of the next stage.
For example, a blank, empty Spim can be created and is then
in the stage SpimStage.new. It contains only the information
where to find the image file. If Spim.read(Writer) is called,
a new Spim is returned, which contains the image data and is at
stage SpimStage.loaded.

Here is a list of the stages that a Spim can be in and in between,
the methods that return a Spim of the next stage.

strict digraph {
 node [shape=box, width=2]

 0 [label="new", target="_top"];
 1 [label="loaded"];
 2 [label="converted"];
 3 [label="preprocessed", below=2];
 4 [label="binarized", below=1];
 5 [label="postprocessed", below=0];
 6 [label="features_extracted"];
 7 [label="features_filtered"];
 8 [label="analyzed"];
 9 [label="stored"];

 {rank=same;
 0 -> 1 [label="read"];
 1 -> 2 [label="convert"];
 }
 2 -> 3 [label="preprocess"];
 {rank=same;
 4 -> 3 [label="binarize", dir="back"];
 5 -> 4 [label="postprocess", dir="back"];
 }
 5 -> 6 [label="extract_features"];
 {rank=same;
 6 -> 7 [label="filter_features"];
 7 -> 8 [label="analyze"];
 }
 8 -> 9 [label="store"];
}

With every step, information is collected. A spim at a later stage
does not duplicate the image data from former stages. However, if this
data is still needed, it can contain a reference to its predecessors.

	
class spotlob.spim.Spim(image, metadata, stage, cached, predecessors)[source]

	Spotlob image item

	
do_process_at_stage(process)[source]

	Apply the given process at at this Spim if the process fits
this stage or at a predecessor of this Spim that fits the
process’ input stage

	Parameters

	process (SpotlobProcessStep) – Process to apply

	Returns

	The Spim that results from the process being applied. It is
in stage process.input_stage + 1

	Return type

	Spim

	
classmethod from_file(image_filepath, cached=False)[source]

	Create a Spim object from an image file. The path is stored in the
Spim object, but the image is not yet loaded.

	Parameters

	
	image_filepath (str) – Path to an image file. The image type must be understood by the
reader that is given when the read-function is called. If an
invalid image type is given at this stage, it will not be
recognized

	cached (bool, optional) – If the spim is to be cached, a reference to predecessors will be
kept and not be deleted by the garbage collector. This allows to
go back to an earlier stage after applying processes, but is more
memory consuming. (the default is False)

	Returns

	An empty Spim at SpimStage.new, that does not contain any data
except the filepath

	Return type

	Spim

	
func_at_stage(spimstage)[source]

	The method like self.read(), self.convert(),… that can
be safely called at the given stage

	Parameters

	spimstage (int) – SpimStage that the requested method corresponds to

	Returns

	the function, that can be applied the given stage

	Return type

	callable

	
get_at_stage(spimstage)[source]

	Get the Spim at a given stage. This returns a predecessor if it has
been chached

	Parameters

	spimstage (int) – That the returned Spim should be at

	Raises

	Exception – If there is no predecessor at the requested stage, for example if
 Spim has not been cached

	Returns

	The Spim at the requested Stage

	Return type

	Spim

	
get_data()[source]

	get all metadata and results as flat metadata

	Returns

	all metadata including collected results

	Return type

	pandas.Dataframe

	
image

	Gives the image contained in this Spim or in the latest
predecessor, that has an image

	Raises

	Exception – Exception is raised if no image is present, most likely
 because it has not been cached

	Returns

	latest image

	Return type

	numpy.array

	
class spotlob.spim.SpimStage[source]

	Enumeration of the stages that a Spim can go through

Process

The detection of features within an image with spotlob is split up into
an abstract but fixed sequence of processes. Any of these process steps is
applied onto a Spim and returns a new Spim. The new Spim contains the
information added by the process step.

digraph seq {
 rankdir="LR";
 "spim1" -> "spim2" [label="spim1.function(process)"];
}

For example, a Spim at stage SpimStage.loaded can be converted, using
a concrete subclass of Converter, named process_opencv.GreyscaleConverter
in the following way:

from spotlob.defaults import load_image
from spotlob.process_opencv import GreyscaleConverter

loaded_spim = load_image("color_image.jpg")
my_converter = GreyscaleConverter()
converted_spim = loaded_spim.convert(my_converter)

	
class spotlob.process.SpotlobProcessStep(function, parameters, add_to_register=True)[source]

	An abstract super class for process steps. A process step can be
applied to bring a spim from one stage to another. It is supposed to save
as internal state, if it has already been applied or needs to be applied
again, because the parameters have changed. This is stored in the
outdated parameter

	
apply(*input_args)[source]

	Apply the process step onto input data (eg. images or contours)
and yield the output data (again, could be a modified image or gathered
data). The actual return values depend on the concrete implementation
of the function. Additional arguments for the function are the
parameters of the process as stored in the parameters field of each
process.

	Returns

	Output of the concrete process implementation

	Return type

	Contours or images

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

For every function of Spim that returns another Spim at
a further stage, there is a subclass of SpotlobProcessStep,
that can be used as super class for an concrete implementation
of that step. The return type of a SpotlobProcessStep.apply
call is different depending on the type of process. The Spim
internally passes the modified data to the new Spim created
through the process.

	
class spotlob.process_steps.Analysis(function, parameters, add_to_register=True, extended_output=True)[source]

	An Analysis class evaluates the metadata (including contours) and
yields its results as a dataframe.

apply returns DataFrame

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.Binarization(function, parameters, add_to_register=True)[source]

	Turns a greyscale image into a black-and-white or binary image.
apply returns a greyscale image

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.Converter(function, parameters, add_to_register=True)[source]

	A converter converts a color image to a greyscale image.
apply returns a greyscale image

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.FeatureFilter(function, parameters, add_to_register=True)[source]

	The FeatureFilter can reduce the number of detected features
by analyzing them.

apply returns contours

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.FeatureFinder(function, parameters, add_to_register=True)[source]

	The FeatureFinder tries to find contours in a binary image.

apply returns contours

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.Postprocessor(function, parameters, add_to_register=True)[source]

	Postprocessing is done on a binary image to facilitate the
detection.
apply returns a greyscale image

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.Preprocessor(function, parameters, add_to_register=True)[source]

	Preprocessing is applied onto a grey image to prepare for
binarization, for example by cleaning the image from unwanted
features.
apply returns a greyscale image

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.process_steps.Reader(function, parameters, add_to_register=True)[source]

	A reader loads the image data from storage into memory.
apply returns an image

Process step implementations

	
class spotlob.process_opencv.BinaryThreshold(threshold)[source]

	Converts the image to a binary one, where the parts above
the given threshold are set to 255 and the parts below it to 0.
The sole parameter is the threshold value.
It uses the cv2.threshold function.

	
class spotlob.process_opencv.ContourFinder(mode)[source]

	Finds contours, i.e. lists of points that enclose connected areas of
the same value. It is based on the cv2.findContours function.
It can distinguish between different levels of nested areas

	Parameters

	mode (string) – Select which kind of blobs should be found and the contour of
which should be returned. Select of the following

	all = all contours, both holes and non-holes

	inner = innermost blobs without holes in them

	outer = only outermost blobs

	holes = only holes, that are contained in other blobs

	non-holes = all blobs, that are not holes

	
class spotlob.process_opencv.ContourFinderSimple[source]

	Finds contours, i.e. lists of points that enclose connected areas of
the same value. It is based on the cv2.findContours function

	
class spotlob.process_opencv.FeatureFormFilter(size, solidity, remove_on_edge)[source]

	It analyzes the contours and filters them using given criteria:

	the enclosed area must be smaller (i.e. contain fewer pixels) than
minimal_area

	it solidity, i.e. the ratio of the area of the contour and its convex
hull must be below a given value

	if remove_on_edge is True, contours that touch the border of the
image are filtered out

	
is_off_border(contour, image_shape)[source]

	this function checks if a contour is touching the border
of an image shaped like image_shape

	
class spotlob.process_opencv.GaussianPreprocess(ksize)[source]

	Blur the image with a gaussian blur with kernel size given
by ksize. It uses the cv2.filter2D function

	
class spotlob.process_opencv.GreyscaleConverter[source]

	Converts a color image to a greyscale image, by selecting one channel
or by converting it to another color space and then selecting one channel.

The supported options are given by the conversion parameter, which must be
one of the following strings
- Hue, Saturation or Value channel
- Red, Blue or Green color channel
- normal Greyscale conversion

It uses the cv2.cvtColor function.
Additionally the dark an bright parts can be switched using invert=True

	
class spotlob.process_opencv.OtsuThreshold[source]

	Performs a binarization based on Otsu’s algorithm.
It uses the cv2.threshold function.

	
class spotlob.process_opencv.PostprocessNothing[source]

	This process is used as a placeholder for a postprocessing step
and does not modify the image at all

	
class spotlob.process_opencv.SimpleReader[source]

	Reads an image from a file as an RGB file.
Standard image formats, such as png, jpg, tif are supported.
It uses cv2.imread.

	
class spotlob.process_opencv.TifReader[source]

	Reads an image from a file as an RGB file.
Only image format tif is supported.
It uses tifffile.memmap.

	
partial_read(filepath, width_percent, height_percent, x0_percent, y0_percent)[source]

	Returns an array of a part of an .tif image.
The arguments must be percentages, even the startingpoint is relative.
Starting Point is the top-left corner.

	
preview(spim)[source]

	This function takes spim at an undefined stage and draws
the effect of the process on top, to provide a preview for the
user on how the funciton will work. No storage or sideeffects
should take place.
In contrast to the apply function it must always return an image

	Parameters

	spim (Spim) – Spim to draw the preview on. It must contain an image

	
class spotlob.analyze_circle.CircleAnalysis(calibration=None, extended_output=True)[source]

	

	
class spotlob.analyze_line.LineAnalysis(calibration=None, linewidth_percentile=95, extended_output=True)[source]

	

Pipeline

The pipeline structure is used to define a sequence of processes
to be applied one after another onto a spim, to automate a
detection task consisting of multiple process steps.

	
class spotlob.pipeline.Pipeline(processes)[source]

	A pipeline is a sequence of processes, that can be applied one after
another.
The processes are stored in a Dictionary, along with the SpimStage at which
they can be applied. The pipeline can be applied completely using the
apply_all_steps method or partially using the apply_from_stage_to_stage
method.

	
apply_all_steps(spim)[source]

	Apply the complete pipeline on a given spim

	Parameters

	spim (Spim) – the spotlob image item to apply the complete pipeline to

	Returns

	a spotlob image item a the stage after the last process

	Return type

	Spim

	
apply_at_stage(spim)[source]

	Applies all steps following the stage of the spim

	Parameters

	spim (Spim) – the spotlob image item to apply the pipeline to

	Returns

	the processed Spim at stage to_stage

	Return type

	Spim

	
apply_from_stage_to_stage(spim, from_stage, to_stage)[source]

	Recursively applies the pipeline-processes from a given stage up to
another given stage.

	Parameters

	
	spim (Spim) – The image item to apply parts of the pipeline to

	from_stage (int) – SpimStage at which stage the first process should be applied

	to_stage (int) – SpimStage at which stage the last process should be applied

	Returns

	The processed Spim at stage to_stage

	Return type

	Spim

	Raises

	Exception: – If to_stage is before from_stage

	
apply_outdated_up_to_stage(spim, up_to_stage)[source]

	Applies all processes since the first outdated one on spim up to
a given stage if no process is outdated or if the outdated stage
is past up_to_stage, spim is processed up to up_to_stage,
or a predecessor is returned at up_to_stage

	Parameters

	
	spim (Spim) – Spim to apply the pipeline to

	up_to_stage (int) – SpimStage up to which the pipeline should be applied

	Returns

	the processed Spim at stage up_to_stage

	Return type

	Spim

	
classmethod from_file(filepath)[source]

	Restore a pipeline from a file

	Parameters

	filepath (str) – filepath of the pipeline file

	Returns

	the restored pipeline object

	Return type

	Pipepline

	
replaced_with(new_process)[source]

	This will give a new pipeline, where one process is replaced with
the given one

	Parameters

	new_process (SpotlobProcessStep) – the new process to be inserted

	Returns

	the pipeline, that includes new_process

	Return type

	Pipeline

	
save(target_path)[source]

	Store the pipeline including process paramaters for
later use.

	Parameters

	target_path (str) – path of the file to store the pipeline to

Notes

This creates a file that is also suitable for batch process
and parallelization.

See also

	Pipeline.from_file()

	Use Pipeline.from_file to restore the pipeline object from storage

Parameters

	
spotlob.parameters.parameter_from_spec(spec)[source]

	This function will create a SpotlobParameter from a specification

	Parameters

	spec (tuple(str, object)) – specification for the parameter, must be one of the following
options:

	float range

	
	(“parameter_name”, (float_min_value,

	float_max_value,
float_value))

	integer range

	
	(“parameter_name”, (int_value,

	int_min_value,
int_max_value))

	boolean value

	(“parameter name”, boolean)

	enumeration

	
	(“parameter name”, [“option1”,

	”option2”,
“option3”])

	Returns

	An instance of a SpotlobParameter subclass: EnumParameter,
FloatParameter, … depending on the type of the spec

	Return type

	SpotlobParameter

Batch processing

	
spotlob.batch.batchprocess(pipeline_file, image_files, multiprocessing=False)[source]

	This function applies a pipeline from a file onto a stack of images.
The results are collected in one pandas.Dataframe.

	Parameters

	
	pipeline_file (str) – the filepath of a pickled pipeline

	image_files (list of str) – paths of the images

	multiprocessing (bool, optional) – if True, the processing will be done in parallel using multiple cpu
cores at once.

	Returns

	Flat Dataframe where one row corresponds to one detected feature

	Return type

	pandas.Dataframe

	
spotlob.batch.is_interactive()[source]

	checks wether called in an interactive environment

Default Pipeline

Spotlob comes with a predefined pipeline, which has some standard routines
built-in. It consists of the following process steps

	SimpleReader

	GreyscaleConverter

	GaussianPreprocess

	OtsuThreshold or
BinaryThreshold

	PostprocessNothing

	ContourFinderSimple

	FeatureFormFilter

	CircleAnalysis or
LineAnalysis

The default pipeline can be configured with parameters of returned by
the following function

	
spotlob.defaults.default_pipeline(mode='circle', thresholding='auto')[source]

	Gives a pipeline which works for many cases and can be used as a
starting point for further tuning or as default for the GUI notebook.
By default, features with an area smaller than 500 pixels are ignored.

	Parameters

	
	mode (str, optional) – this defines the way in which detected features will be evaluated

	as line the linewidth is calculated

	as circle an ellipse is fitted and by default features that touch
the edge of the image get ignored (the default is “circle”)

	thresholding (str, optional) –
	auto uses Otsu’s thresholding algorithm

	simple uses a fixed threshold value, 100 by default
(the default is “auto”)

	Returns

	the pipeline including default parameters

	Return type

	Pipeline

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 spotlob	

 	
 	
 spotlob.analyze_circle	

 	
 	
 spotlob.analyze_line	

 	
 	
 spotlob.batch	

 	
 	
 spotlob.parameters	

 	
 	
 spotlob.pipeline	

 	
 	
 spotlob.process	

 	
 	
 spotlob.process_opencv	

 	
 	
 spotlob.process_steps	

 	
 	
 spotlob.register	

 	
 	
 spotlob.spim	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | O
 | P
 | R
 | S
 | T

A

 	
 	Analysis (class in spotlob.process_steps)

 	apply() (spotlob.process.SpotlobProcessStep method)

 	apply_all_steps() (spotlob.pipeline.Pipeline method)

 	
 	apply_at_stage() (spotlob.pipeline.Pipeline method)

 	apply_from_stage_to_stage() (spotlob.pipeline.Pipeline method)

 	apply_outdated_up_to_stage() (spotlob.pipeline.Pipeline method)

B

 	
 	batchprocess() (in module spotlob.batch)

 	
 	Binarization (class in spotlob.process_steps)

 	BinaryThreshold (class in spotlob.process_opencv)

C

 	
 	CircleAnalysis (class in spotlob.analyze_circle)

 	ContourFinder (class in spotlob.process_opencv)

 	
 	ContourFinderSimple (class in spotlob.process_opencv)

 	Converter (class in spotlob.process_steps)

D

 	
 	default_pipeline() (in module spotlob.defaults)

 	
 	do_process_at_stage() (spotlob.spim.Spim method)

F

 	
 	FeatureFilter (class in spotlob.process_steps)

 	FeatureFinder (class in spotlob.process_steps)

 	FeatureFormFilter (class in spotlob.process_opencv)

 	
 	from_file() (spotlob.pipeline.Pipeline class method)

 	(spotlob.spim.Spim class method)

 	func_at_stage() (spotlob.spim.Spim method)

G

 	
 	GaussianPreprocess (class in spotlob.process_opencv)

 	get_at_stage() (spotlob.spim.Spim method)

 	
 	get_data() (spotlob.spim.Spim method)

 	GreyscaleConverter (class in spotlob.process_opencv)

I

 	
 	image (spotlob.spim.Spim attribute)

 	
 	is_interactive() (in module spotlob.batch)

 	is_off_border() (spotlob.process_opencv.FeatureFormFilter method)

L

 	
 	LineAnalysis (class in spotlob.analyze_line)

O

 	
 	OtsuThreshold (class in spotlob.process_opencv)

P

 	
 	parameter_from_spec() (in module spotlob.parameters)

 	partial_read() (spotlob.process_opencv.TifReader method)

 	Pipeline (class in spotlob.pipeline)

 	PostprocessNothing (class in spotlob.process_opencv)

 	Postprocessor (class in spotlob.process_steps)

 	Preprocessor (class in spotlob.process_steps)

 	preview() (spotlob.process.SpotlobProcessStep method)

 	(spotlob.process_opencv.TifReader method)

 	(spotlob.process_steps.Analysis method)

 	(spotlob.process_steps.Binarization method)

 	(spotlob.process_steps.Converter method)

 	(spotlob.process_steps.FeatureFilter method)

 	(spotlob.process_steps.FeatureFinder method)

 	(spotlob.process_steps.Postprocessor method)

 	(spotlob.process_steps.Preprocessor method)

R

 	
 	Reader (class in spotlob.process_steps)

 	
 	replaced_with() (spotlob.pipeline.Pipeline method)

S

 	
 	save() (spotlob.pipeline.Pipeline method)

 	SimpleReader (class in spotlob.process_opencv)

 	Spim (class in spotlob.spim)

 	SpimStage (class in spotlob.spim)

 	spotlob.analyze_circle (module)

 	spotlob.analyze_line (module)

 	spotlob.batch (module)

 	
 	spotlob.parameters (module)

 	spotlob.pipeline (module)

 	spotlob.process (module)

 	spotlob.process_opencv (module)

 	spotlob.process_steps (module)

 	spotlob.register (module)

 	spotlob.spim (module)

 	SpotlobProcessStep (class in spotlob.process)

T

 	
 	TifReader (class in spotlob.process_opencv)

 All modules for which code is available

	spotlob.analyze_circle

	spotlob.analyze_line

	spotlob.batch

	spotlob.defaults

	spotlob.parameters

	spotlob.pipeline

	spotlob.process

	spotlob.process_opencv

	spotlob.process_steps

	spotlob.spim

 Source code for spotlob.analyze_circle

import json

import cv2
import pandas as pd
import numpy as np

from .process_steps import Analysis
from .parameters import SpotlobParameterSet
from .process_opencv import draw_contours, crop_to_contour

[docs]class CircleAnalysis(Analysis):
 def __init__(self, calibration=None, extended_output=True):
 self.calibration = calibration
 super(CircleAnalysis, self).__init__(
 self.analyze, [], extended_output=extended_output)

 def analyze(self, metadata):
 contours = metadata['contours']
 areas = []
 ellipses_positions = []
 ellipses_major_axes = []
 ellipses_minor_axes = []
 ellipses_angles = []

 for cont in contours:
 # AREA
 areas += [cv2.contourArea(cont)]

 # ELLIPSE
 try:
 e_pos, (e_major_ax, e_minor_ax), angle = cv2.fitEllipse(cont)
 except cv2.error:
 e_pos, (e_major_ax,
 e_minor_ax), angle = np.nan, (np.nan, np.nan), np.nan

 ellipses_positions += [np.array(e_pos)]
 ellipses_major_axes += [e_major_ax]
 ellipses_minor_axes += [e_minor_ax]
 ellipses_angles += [angle]

 res_dict = {"area_px2": areas,
 "ellipse_position_px": ellipses_positions,
 "ellipse_majorAxis_px": ellipses_major_axes,
 "ellipse_minorAxis_px": ellipses_minor_axes,
 "ellipse_angle": ellipses_angles}

 if self.extended_output:
 res_dict.update({"contours": contours})

 result = pd.DataFrame(res_dict)

 if not self.calibration:
 return result
 else:
 return self.calibration.calibrate(result)

 def draw_results(self, image, dataframe, crop_to_contours=False):
 for _, row in dataframe.iterrows():
 pos_x, pos_y = row["ellipse_position_px"]
 e_major = row["ellipse_majorAxis_px"]
 e_minor = row["ellipse_minorAxis_px"]
 angle = row["ellipse_angle"]

 e_pos = (int(pos_x), int(pos_y))
 e_size = (int(e_major/2.0), int(e_minor/2.0))

 pen_color = [255, 0, 0]

 if "contours" in row.keys():
 contour = row["contours"]
 draw_contours(image, contour)

 cv2.circle(image, e_pos, 3, pen_color, -1)
 cv2.ellipse(image, e_pos, e_size, angle, 0, 360, pen_color, 1)

 if crop_to_contours:
 if "contours" in row.keys():
 contour = row["contours"]
 image = crop_to_contour(image, contour)

 return image

 Source code for spotlob.analyze_line

import json

import cv2
import pandas as pd
import numpy as np

from .process_steps import Analysis
from .parameters import SpotlobParameterSet
from .calculation import points_within_contours, max_extends,\
 distance_point_to_line, straight_line_rectangle_collision, perp
from .process_opencv import draw_contours

[docs]class LineAnalysis(Analysis):
 def __init__(self, calibration=None,
 linewidth_percentile=95,
 extended_output=True):
 self.calibration = calibration
 self.linewidth_percentile = linewidth_percentile
 super(LineAnalysis, self).__init__(
 self.analyze, [], extended_output=extended_output)

 def analyze(self, metadata):
 contours = metadata['contours']

 if len(contours) == 0:
 empty_df = pd.DataFrame([], columns=["area_px2",
 "linewidth_px",
 "linewidth2_px",
 "bb_width_px",
 "bb_height_px",
 "bb_angle",
 "distances_hist",
 "distances_bin_edges_px"])
 return empty_df

 elif len(contours) == 1:
 inner_points = points_within_contours(contours)
 else:
 inner_points = np.vstack([points_within_contours([ctr])
 for ctr in contours])

 area = len(inner_points)

 vx, vy, x0, y0 = cv2.fitLine(inner_points,
 cv2.DIST_FAIR, 0, 0.01, 0.01)
 # x0, y0, vx, vy
 line_parameters = x0[0], y0[0], vx[0], vy[0]

 # calculate crossings with borders
 width, height = max_extends(contours)

 image_rectangle = 0, 0, width, height
 p1, p2 = straight_line_rectangle_collision(line_parameters,
 image_rectangle)

 distances = distance_point_to_line(inner_points[:, 0],
 inner_points[:, 1],
 p1,
 p2)

 linewidth_perc = np.percentile(distances, self.linewidth_percentile)*2

 line_length = np.linalg.norm(np.array(p2)-np.array(p1))
 linewidth_shading = area/line_length

 res_dict = {"area_px2": area,
 "linewidth_px": linewidth_perc,
 "linewidth_shading_px": linewidth_shading,
 "line_params": [np.array(line_parameters)],
 "line_start": [np.array(p1)],
 "line_end": [np.array(p2)]}

 if self.extended_output:
 hist, bin_edges = np.histogram(distances, bins="auto")
 res_dict.update({"distances_hist": [hist],
 "distances_bin_edges_px": [bin_edges],
 "contours": [contours]})

 result = pd.DataFrame(res_dict,
 index=[0])

 if not self.calibration:
 return result
 else:
 return self.calibration.calibrate(result)

 def draw_results(self, image, dataframe, crop_to_contours=False):
 if len(dataframe) == 1:
 row = dataframe.iloc[0]

 x0, y0, vx, vy = row["line_params"]
 linewidth = row["linewidth_px"]
 linewidth_shading = row["linewidth_shading_px"]

 if "contours" in dataframe:
 contour = row["contours"]
 draw_contours(image, contour)

 cstart = np.round(row["line_start"]).astype(int)
 cstop = np.round(row["line_end"]).astype(int)

 # center line
 cv2.line(image, tuple(cstart), tuple(cstop),
 (255, 0, 0), 1, lineType=cv2.LINE_AA)
 cv2.circle(image, tuple(cstart), 4, (255, 0, 0), -1)
 cv2.circle(image, tuple(cstop), 4, (255, 0, 0), -1)

 # border lines

 # percentile linewidth
 self._draw_line_borders(image,
 linewidth,
 (255, 0, 0),
 cstart,
 cstop,
 (vx, vy))

 # # shading linewidth
 self._draw_line_borders(image,
 linewidth_shading,
 (0, 200, 200),
 cstart,
 cstop,
 (vx, vy))

 return image

 def _draw_line_borders(self,
 image,
 linewidth,
 color,
 center_start,
 center_stop,
 vector):

 # orthogonal vector to line vector with length linewidth
 # assuming vector is normalized to length 1
 orthogonal_v = np.round(perp(vector)*linewidth/2.0).astype(int)

 lower_start = tuple(np.subtract(center_start, orthogonal_v))
 lower_stop = tuple(np.subtract(center_stop, orthogonal_v))
 upper_start = tuple(np.add(center_start, orthogonal_v))
 upper_stop = tuple(np.add(center_stop, orthogonal_v))

 cv2.line(image, lower_start, lower_stop,
 color, 2, lineType=cv2.LINE_AA)
 cv2.line(image, upper_start, upper_stop,
 color, 2, lineType=cv2.LINE_AA)

 Source code for spotlob.batch

import multiprocessing as mp
import warnings

import pandas as pd

from .spim import Spim
from .pipeline import Pipeline

[docs]def is_interactive():
 """checks wether called in an interactive environment"""
 import __main__ as main
 return not hasattr(main, '__file__')

def _process_job(job):
 # function cannot be pickled,
 # so load function with dill within function call
 pipeline_file, image_file = job
 pipeline = Pipeline.from_file(pipeline_file)
 myspim = Spim.from_file(image_file)
 processed_spim = pipeline.apply_at_stage(myspim)
 return processed_spim.get_data()

[docs]def batchprocess(pipeline_file, image_files, multiprocessing=False):
 """This function applies a pipeline from a file onto a stack of images.
 The results are collected in one :class:`pandas.Dataframe`.

 PARAMETERS

 pipeline_file : str
 the filepath of a pickled pipeline
 image_files : list of str
 paths of the images
 multiprocessing : bool, optional
 if True, the processing will be done in parallel using multiple cpu
 cores at once.

 RETURNS

 pandas.Dataframe
 Flat Dataframe where one row corresponds to one detected feature
 """
 if multiprocessing:
 if is_interactive():
 warnings.warn(
 """It seems you are running in an interactive environment.
 Multiprocessing might not work.
 Consider using ipyparallel instead""")

 jobs = zip([pipeline_file]*len(image_files), image_files)
 no_cores = mp.cpu_count()
 pool = mp.Pool(processes=no_cores)
 try:
 res = pool.map(_process_job, jobs)
 finally:
 pool.close()
 pool.join()

 else:
 pipeline = Pipeline.from_file(pipeline_file)

 def process_file(fn):
 myspim = Spim.from_file(fn)
 respim = pipeline.apply_at_stage(myspim)
 return respim.get_data()

 res = map(process_file, image_files)
 #
 # make large dataframe out of list of dataframes
 return pd.concat(res)

 Source code for spotlob.defaults

from IPython.display import display

import os.path

from .widget import SpotlobNotebookGui
from .process_opencv import SimpleReader, GreyscaleConverter,\
 GaussianPreprocess, OtsuThreshold, BinaryThreshold, PostprocessNothing, \
 ContourFinderSimple, FeatureFormFilter
from .pipeline import Pipeline
from .preview import MatplotlibPreviewScreen
from .register import PROCESS_REGISTER
from .analyze_circle import CircleAnalysis
from .analyze_line import LineAnalysis
from .spim import Spim

[docs]def default_pipeline(mode="circle", thresholding="auto"):
 """Gives a pipeline which works for many cases and can be used as a
 starting point for further tuning or as default for the GUI notebook.
 By default, features with an area smaller than 500 pixels are ignored.

 Parameters

 mode : str, optional
 this defines the way in which detected features will be evaluated

 - as `line` the linewidth is calculated
 - as `circle` an ellipse is fitted and by default features that touch
 the edge of the image get ignored (the default is "circle")

 thresholding : str, optional
 - `auto` uses Otsu's thresholding algorithm
 - `simple` uses a fixed threshold value, 100 by default
 (the default is "auto")

 Returns

 Pipeline
 the pipeline including default parameters
 """

 if mode == "circle":
 feature_form_filter = FeatureFormFilter(500, 0, True)
 analysis = CircleAnalysis()
 elif mode == "line":
 feature_form_filter = FeatureFormFilter(500, 0, False)
 analysis = LineAnalysis()

 if thresholding == "auto":
 binarization = OtsuThreshold()
 elif thresholding == "simple":
 binarization = BinaryThreshold(100)

 return Pipeline([SimpleReader(),
 GreyscaleConverter(),
 GaussianPreprocess(1),
 binarization,
 PostprocessNothing(),
 ContourFinderSimple(),
 feature_form_filter,
 analysis])

def make_gui(spim_or_filepath, mode="circle", thresholding="auto"):
 """Creates a :class:`~spotlob.SpotlobNotebookGui` object which opens
 a given :class:`~spotlob.Spim` or image file for preview editing

 PARAMETERS

 spim_or_filepath : Spim or str
 Spim (should be cached) or filepath of an image file
 to be loaded

 mode : str
 "circle" or "line" depending on how you want the image to
 be evaluated

 thresholding : str
 "auto" for automatic thresholding based on the histogram (Otsu)
 or "simple" for a fixed thresholding based on a single value

 RETURNS

 SpotlobNotebookGui
 GUI object that can be displayed using the
 :func:`~spotlob.defaults.show_gui` function within
 a jupyter notebook
 """
 if not isinstance(spim_or_filepath, Spim):
 if os.path.exists(spim_or_filepath):
 spim = Spim.from_file(spim_or_filepath, cached=True)
 else:
 raise FileNotFoundError("File %s not found" % spim_or_filepath)
 else:
 spim = spim_or_filepath

 pipe = default_pipeline(mode=mode, thresholding=thresholding)
 preview_screen = MatplotlibPreviewScreen()
 gui = SpotlobNotebookGui(pipe, preview_screen, spim)
 return gui

def show_gui(gui, *args, **kwargs):
 """Display a :class:`~spotlob.SpotlobNotebookGui` object.
 Run the `%matplotlib widget` magic command to get live preview

 PARAMETERS

 gui : SpotlobNotebookGui
 Widget and preview screen, as created by the
 :func:`~spotlob.defaults.show_gui` function
 """
 widgets = gui.make_widgets()
 gui.show_preview_screen(*args, **kwargs)
 display(widgets)
 display(gui.run_button())

def use_in(gui, register=None):
 """Use this as a decorator replace a process in a
 :class:`~spotlob.SpotlobNotebookGui` object

 PARAMETERS

 gui : SpotlobNotebookGui
 GUI object to replace the process in

 RETURNS

 callable
 wrapper function
 """
 if register is None:
 register = PROCESS_REGISTER

 def wrapper(fn):
 process = register.available_processes[fn.__name__]

 # overwrite process at the given stage in pipeline of gui
 gui.pipeline = gui.pipeline.replaced_with(process)
 return fn
 return wrapper

def load_image(filepath, cached=False):
 """Create a :class:`~spotlob.Spim` from a filepath directly,
 using a default reader

 PARAMETERS

 filepath : str
 Path to the image file
 cached : bool
 Wether or not references to previous Spim should be kept
 when processing this spim to newer versions

 RETURNS

 Spim
 Spim containing the image, at stage SpimStage.loaded
 """
 spim = Spim.from_file(filepath, cached=cached)
 reader = SimpleReader()
 return spim.read(reader)

 Source code for spotlob.parameters

[docs]def parameter_from_spec(spec):
 """This function will create a SpotlobParameter from a specification

 PARAMETERS

 spec : tuple(str, object)
 specification for the parameter, must be one of the following
 options:

 +---------------+--------------------------------------+
 | float range | ("parameter_name", (float_min_value, |
 | | float_max_value, |
 | | float_value)) |
 +---------------+--------------------------------------+
 | integer range | ("parameter_name", (int_value, |
 | | int_min_value, |
 | | int_max_value)) |
 +---------------+--------------------------------------+
 | boolean value | ("parameter name", boolean) |
 +---------------+--------------------------------------+
 | enumeration | ("parameter name", ["option1", |
 | | "option2", |
 | | "option3"]) |
 +---------------+--------------------------------------+

 RETURNS

 SpotlobParameter
 An instance of a SpotlobParameter subclass: EnumParameter,
 FloatParameter, ... depending on the type of the spec

 """
 try:
 parname, val = spec
 try:
 # split into min,max,value
 minv, maxv, v = val
 if any([type(vi) == float for vi in val]):
 return NumericRangeParameter(parname,
 float(v),
 float(minv),
 float(maxv),
 float)
 elif all([type(vi) == int for vi in val]):
 return NumericRangeParameter(parname,
 int(v),
 int(minv),
 int(maxv),
 int)
 else:
 raise TypeError

 except TypeError:
 # could not create a slider
 if type(val) == bool:
 return BoolParameter(parname, val)
 elif all([type(s) == str for s in val]):
 return EnumParameter(parname, val[0], val)
 except:
 raise Exception("Invalid parameter specification")

class SpotlobParameter(object):
 def __init__(self, name, value, type_, description=""):
 self.name = name
 self._value = value
 self.type = type_
 self.description = description
 self.preview_enabled = False
 super(SpotlobParameter, self).__init__()

 def __repr__(self):
 return "<SpotlobParameter(%s) %s: %s>"\
 % (self.type, self.name, self.value)

 @property
 def value(self):
 return self._value

 @value.setter
 def value(self, new_val):
 self._value = new_val

 def __str__(self):
 return "%s: %s" % (self.name, self.value)

class SpotlobParameterSet(object):
 def __init__(self, parameters):
 self.parameters = parameters

 @property
 def names(self):
 return [p.name for p in self.parameters]

 @property
 def values(self):
 return [p.value for p in self.parameters]

 def __getitem__(self, identifier):
 try:
 return self.parameters[identifier]
 except TypeError:
 ind = self.names.index(identifier)
 return self.parameters[ind]

 def to_dict(self):
 return dict([(p.name, p.value) for p in self.parameters])

 def __str__(self):
 lines = ["- %s\n" % p for p in self.parameters]
 return "".join(lines)

class FilepathParameter(SpotlobParameter):
 def __init__(self, name, path):
 super(FilepathParameter, self).__init__(name, path, str, "")

class EnumParameter(SpotlobParameter):
 def __init__(self, name, value, options, description=""):
 self.options = options
 super(EnumParameter, self).__init__(
 name, value, str, description)

class NumericRangeParameter(SpotlobParameter):
 def __init__(self, name, value, minvalue, maxvalue,
 type_=int, step=1, description=""):
 self.minvalue = minvalue
 self.maxvalue = maxvalue
 self.step = step
 super(NumericRangeParameter, self).__init__(
 name, value, type_, description)

class BoolParameter(SpotlobParameter):
 def __init__(self, name, value):
 super(BoolParameter, self).__init__(name, value, bool, description="")

 Source code for spotlob.pipeline

"""
The pipeline structure is used to define a sequence of processes
to be applied one after another onto a spim, to automate a
detection task consisting of multiple process steps.
"""

import dill

[docs]class Pipeline(object):
 """A pipeline is a sequence of processes, that can be applied one after
 another.
 The processes are stored in a Dictionary, along with the SpimStage at which
 they can be applied. The pipeline can be applied completely using the
 `apply_all_steps` method or partially using the `apply_from_stage_to_stage`
 method.
 """

 def __init__(self, processes):
 self.process_stage_dict = dict([(p.input_stage, p) for p in processes])

 @property
 def processes(self):
 return self.process_stage_dict.values()

[docs] def replaced_with(self, new_process):
 """This will give a new pipeline, where one process is replaced with
 the given one

 Parameters

 new_process : SpotlobProcessStep
 the new process to be inserted

 Returns

 Pipeline
 the pipeline, that includes `new_process`

 """
 new_dict = self.process_stage_dict.copy()
 new_dict[new_process.input_stage] = new_process

 return Pipeline(new_dict.values())

[docs] def apply_from_stage_to_stage(self, spim, from_stage, to_stage):
 """Recursively applies the pipeline-processes from a given stage up to
 another given stage.

 Parameters

 spim : Spim
 The image item to apply parts of the pipeline to
 from_stage : int
 SpimStage at which stage the first process should be applied
 to_stage : int
 SpimStage at which stage the last process should be applied

 Returns

 Spim
 The processed Spim at stage `to_stage`

 Raises

 Exception:
 If to_stage is before from_stage

 """
 if from_stage == to_stage:
 return spim
 elif from_stage > to_stage:
 # return self.apply_from_stage_to_stage(spim, to_stage, from_stage)
 raise Exception("invalid apply request")
 else:
 # recursive
 intermediate_spim = self.apply_from_stage_to_stage(
 spim, from_stage, to_stage-1)
 last_process = self.process_stage_dict[to_stage-1]
 outspim = intermediate_spim.do_process_at_stage(last_process)
 return outspim

 def _maxstage(self):
 return max(self.process_stage_dict.keys())+1

[docs] def apply_all_steps(self, spim):
 """Apply the complete pipeline on a given spim

 Parameters

 spim : Spim
 the spotlob image item to apply the complete pipeline to

 Returns

 Spim
 a spotlob image item a the stage after the last process
 """

 minstage = min(self.process_stage_dict.keys())
 maxstage = self._maxstage()
 return self.apply_from_stage_to_stage(spim, minstage, maxstage)

[docs] def apply_at_stage(self, spim):
 """Applies all steps following the stage of the spim

 Parameters

 spim : Spim
 the spotlob image item to apply the pipeline to

 Returns

 Spim
 the processed Spim at stage `to_stage`
 """

 startstage = spim.stage
 maxstage = self._maxstage()
 return self.apply_from_stage_to_stage(spim, startstage, maxstage)

[docs] def apply_outdated_up_to_stage(self, spim, up_to_stage):
 """Applies all processes since the first outdated one on spim up to
 a given stage if no process is outdated or if the outdated stage
 is past up_to_stage, spim is processed up to up_to_stage,
 or a predecessor is returned at up_to_stage

 Parameters

 spim : Spim
 Spim to apply the pipeline to
 up_to_stage : int
 SpimStage up to which the pipeline should be applied

 Returns

 Spim
 the processed Spim at stage `up_to_stage`
 """
 first_outdated_stage = -1

 # find first stage that is outdated
 for st, process in sorted(self.process_stage_dict.items()):
 if process.outdated:
 first_outdated_stage = st
 break

 if first_outdated_stage >= 0:
 if first_outdated_stage < up_to_stage:
 return self.apply_from_stage_to_stage(
 spim, first_outdated_stage, up_to_stage)

 # nothing is outdated or outdated stage is past up_to_stage
 if up_to_stage > spim.stage:
 return self.apply_from_stage_to_stage(spim,
 spim.stage,
 up_to_stage)
 else:
 return spim.get_at_stage(up_to_stage)

[docs] def save(self, target_path):
 """Store the pipeline including process paramaters for
 later use.

 Parameters

 target_path : str
 path of the file to store the pipeline to

 Notes

 This creates a file that is also suitable for batch process
 and parallelization.

 See also

 Pipeline.from_file
 Use `Pipeline.from_file` to restore the pipeline object
 from storage
 """
 with open(target_path, "wb") as dill_file:
 dill.dump(self, dill_file)

[docs] @classmethod
 def from_file(cls, filepath):
 """Restore a pipeline from a file

 Parameters

 filepath : str
 filepath of the pipeline file

 Returns

 Pipepline
 the restored pipeline object
 """

 with open(filepath, "rb") as dill_file:
 restored_pipe = dill.load(dill_file)
 return restored_pipe

 def __str__(self):
 out = []
 for stage in sorted(self.process_stage_dict.keys()):
 process = self.process_stage_dict[stage]
 out += [str(process)]
 return "".join(out)

 Source code for spotlob.process

"""
The detection of features within an image with spotlob is split up into
an abstract but fixed sequence of processes. Any of these process steps is
applied onto a Spim and returns a new Spim. The new Spim contains the
information added by the process step.

.. graphviz::

 digraph seq {
 rankdir="LR";
 "spim1" -> "spim2" [label="spim1.function(process)"];
 }

For example, a `Spim` at stage `SpimStage.loaded` can be converted, using
a concrete subclass of `Converter`, named `process_opencv.GreyscaleConverter`
in the following way:

.. code-block:: python

 from spotlob.defaults import load_image
 from spotlob.process_opencv import GreyscaleConverter

 loaded_spim = load_image("color_image.jpg")
 my_converter = GreyscaleConverter()
 converted_spim = loaded_spim.convert(my_converter)
"""

import numpy as np

from .spim import SpimStage
from .parameters import SpotlobParameterSet

[docs]class SpotlobProcessStep(object):
 """An abstract super class for process steps. A process step can be
 applied to bring a spim from one stage to another. It is supposed to save
 as internal state, if it has already been applied or needs to be applied
 again, because the parameters have changed. This is stored in the
 `outdated` parameter"""

 # stage that a spim should have before this Process can be applied
 input_stage = None

 # a process is outdated, if it has not been
 # applied since the parameters changed
 outdated = True

 def __init__(self, function, parameters, add_to_register=True):
 """
 A process step can be applied to bring a spim from one stage
 to another

 Parameters

 function : callable
 a function to be applied on spim with optional additional
 parameters
 parameters : list of SpotlobParameter
 the parameters that will be used for the function as soon as
 it is applied
 add_to_register : bool, optional
 if this is True, the process will be registered centrally now, i.e.
 upon creation of the SpotlobProcessStep object. This allows the
 user to know which processes are available (the default is True)

 """
 self.function = function
 self.parameters = SpotlobParameterSet(parameters)

 # import needs to be delayed to avoid circular imports
 from .register import PROCESS_REGISTER

 if add_to_register:
 PROCESS_REGISTER.register_process(self)

[docs] def preview(self, spim):
 """
 This function takes spim at an undefined stage and draws
 the effect of the process on top, to provide a preview for the
 user on how the funciton will work. No storage or sideeffects
 should take place.
 In contrast to the apply function it must always return an image

 Parameters

 spim : Spim
 Spim to draw the preview on. It must contain an image

 """
 raise NotImplementedError("abstract: to be implemented by subclass")

[docs] def apply(self, *input_args):
 """Apply the process step onto input data (eg. images or contours)
 and yield the output data (again, could be a modified image or gathered
 data). The actual return values depend on the concrete implementation
 of the function. Additional arguments for the function are the
 parameters of the process as stored in the `parameters` field of each
 process.

 Returns

 Contours or images
 Output of the concrete process implementation
 """

 output = self.function(*input_args, **self.parameters.to_dict())
 self.outdated = False
 return output

 def __str__(self):
 classname = str(type(self).__name__)
 parameters_str = str(self.parameters)
 return "%s\n%s" % (classname, parameters_str)

 Source code for spotlob.process_opencv

import cv2
import pandas as pd
import numpy as np
import os
from PIL import Image
import tifffile as tf
import imageio as im

from .process_steps import Reader, Converter, Preprocessor,\
 Binarization, Postprocessor, FeatureFinder, FeatureFilter
from .parameters import SpotlobParameterSet, EnumParameter,\
 BoolParameter, NumericRangeParameter

[docs]class SimpleReader(Reader):
 """Reads an image from a file as an RGB file.
 Standard image formats, such as `png`, `jpg`, `tif` are supported.
 It uses `cv2.imread`.
 """

 def __init__(self):
 super(SimpleReader, self).__init__(self.fn_read, [])

 def fn_read(self, filepath):
 # load as color, convert from BGR to RGB
 if os.path.exists(filepath):
 return cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2RGB), {}
 else:
 raise IOError("File %s not found" % filepath)

[docs]class TifReader(Reader):
 """
 Reads an image from a file as an RGB file.
 Only image format `tif` is supported.
 It uses `tifffile.memmap`.
 """

 def __init__(self):
 pars = [NumericRangeParameter("width_percent", 100, 0, 100),
 NumericRangeParameter("height_percent", 100, 0, 100),
 NumericRangeParameter("x0_percent", 0, 0, 100),
 NumericRangeParameter("y0_percent", 0, 0, 100)]

 self._preview_image_cache = None

 super(TifReader, self).__init__(self.partial_read, pars)

 def _absolute_ROI_corners(self, filepath, width_percent, height_percent, x0, y0):

 if os.path.exists(filepath):
 im = Image.open(filepath)
 w, h = im.size

 new_w = int(w * width_percent / 100)
 new_h = int(h * height_percent / 100)
 x0 = int(w * x0 / 100)
 y0 = int(h * y0 / 100)
 x1 = x0 + new_w
 y1 = y0 + new_h

 return x0, y0, min(x1,w), min(y1,h)
 else:
 raise IOError(f"File {filepath} not found")

[docs] def partial_read(self, filepath, width_percent, height_percent, x0_percent, y0_percent): # -> tuple(np.ndarray, dict)
 """
 Returns an array of a part of an .tif image.
 The arguments must be percentages, even the startingpoint is relative.
 Starting Point is the top-left corner.
 """
 x0,y0, x1,y1 = self._absolute_ROI_corners(filepath,
 width_percent,
 height_percent,
 x0_percent,
 y0_percent)

 return tf.memmap(filepath, dtype= np.uint8)[y0:y1, x0:x1, :], {"ROI": (x0,y0,x1,y1)}

[docs] def preview(self, spim):
 filepath = spim.metadata["filepath"]
 x0,y0, x1,y1 = self._absolute_ROI_corners(filepath,
 self.parameters["width_percent"].value,
 self.parameters["height_percent"].value,
 self.parameters["x0_percent"].value,
 self.parameters["y0_percent"].value)

 # read entire image
 if self._preview_image_cache is None:
 self._preview_image_cache = cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2RGB)

 image = self._preview_image_cache.copy()

 start_point = x0,y0
 end_point = x1,y1

 image = (image*0.5).astype(np.uint8) # darken image
 image[y0:y1, x0:x1] *= 2 # brighten ROI

 # draw rectangle
 image = cv2.rectangle(image, start_point, end_point, (0,255,0), thickness=1)

 return image

[docs]class GreyscaleConverter(Converter):
 """Converts a color image to a greyscale image, by selecting one channel
 or by converting it to another color space and then selecting one channel.

 The supported options are given by the `conversion` parameter, which must be
 one of the following strings
 - `Hue`, `Saturation` or `Value` channel
 - `Red`, `Blue` or `Green` color channel
 - normal `Greyscale` conversion

 It uses the `cv2.cvtColor` function.
 Additionally the dark an bright parts can be switched using `invert=True`
 """

 def __init__(self):
 self.hsv_str_list = ["Hue", "Saturation", "Value"]
 self.rgb_str_list = ["Red channel", "Blue channel", "Green channel"]
 converter_options = ["Grey"] + self.hsv_str_list + self.rgb_str_list

 pars = [EnumParameter("conversion",
 converter_options[0],
 converter_options),
 BoolParameter("invert", False)]
 super(GreyscaleConverter, self).__init__(self.convert, pars)

 def convert(self, rgb_image, conversion, invert):
 if conversion == "Grey":
 out = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2GRAY).astype(np.uint8)
 else:
 if conversion in self.hsv_str_list:
 code = cv2.COLOR_RGB2HSV
 ch_nr = self.hsv_str_list.index(conversion)
 out = cv2.cvtColor(rgb_image, code)
 elif conversion in self.rgb_str_list:
 ch_nr = self.rgb_str_list.index(conversion)
 out = rgb_image

 out = out[:, :, ch_nr].astype(np.uint8)

 if invert:
 return cv2.bitwise_not(out)
 else:
 return out

[docs]class GaussianPreprocess(Preprocessor):
 """Blur the image with a gaussian blur with kernel size given
 by `ksize`. It uses the `cv2.filter2D` function
 """

 def __init__(self, ksize):
 pars = [NumericRangeParameter("kernelsize", ksize, 1, 47, step=2)]
 super(GaussianPreprocess, self).__init__(self.filter_fn, pars)

 def filter_fn(self, grey_image, kernelsize):
 if kernelsize > 1:
 kernel = np.ones((kernelsize, kernelsize), np.float32)
 kernel /= kernelsize**2
 return cv2.filter2D(grey_image, -1, kernel)
 else:
 return grey_image

[docs]class BinaryThreshold(Binarization):
 """Converts the image to a binary one, where the parts above
 the given threshold are set to 255 and the parts below it to 0.
 The sole parameter is the threshold value.
 It uses the `cv2.threshold` function.
 """

 def __init__(self, threshold):
 pars = SpotlobParameterSet(
 [NumericRangeParameter("threshold", threshold, 0, 255)])
 super(BinaryThreshold, self).__init__(self.threshold_fn, pars)

 def threshold_fn(self, grey_image, threshold):
 _, im = cv2.threshold(
 grey_image, threshold, 255, cv2.THRESH_BINARY)
 return im

[docs]class OtsuThreshold(Binarization):
 """Performs a binarization based on Otsu's algorithm.
 It uses the `cv2.threshold` function.
 """

 def __init__(self):
 super(OtsuThreshold, self).__init__(self.threshold_fn, [])

 def threshold_fn(self, grey_image):
 _, im = cv2.threshold(grey_image,
 0,
 255,
 cv2.THRESH_OTSU)
 return im

[docs]class PostprocessNothing(Postprocessor):
 """This process is used as a placeholder for a postprocessing step
 and does not modify the image at all"""

 def __init__(self):
 super(PostprocessNothing, self).__init__(self.postprocess_fn, [])

 def postprocess_fn(self, im):
 return im

[docs]class ContourFinderSimple(FeatureFinder):
 """Finds contours, i.e. lists of points that enclose connected areas of
 the same value. It is based on the `cv2.findContours` function
 """

 def __init__(self):
 super(ContourFinderSimple, self).__init__(self.finder_fn, [])

 def finder_fn(self, bin_im):
 cont_ret = cv2.findContours(bin_im,
 cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)
 # cont_ret is
 # contours, hierarchy for opencv >4.0
 # im, contours, hierarchy for opencv <=3.4

 contours = cont_ret[-2]
 return contours

[docs]class ContourFinder(FeatureFinder):
 """Finds contours, i.e. lists of points that enclose connected areas of
 the same value. It is based on the `cv2.findContours` function.
 It can distinguish between different levels of nested areas

 Parameters

 mode : string
 Select which kind of blobs should be found and the contour of
 which should be returned. Select of the following

 * all = all contours, both holes and non-holes

 * inner = innermost blobs without holes in them

 * outer = only outermost blobs

 * holes = only holes, that are contained in other blobs

 * non-holes = all blobs, that are not holes
 """

 def __init__(self, mode):
 mode_par = EnumParameter("mode", mode,
 ["outer",
 "inner",
 "all",
 "holes",
 "non-holes"])
 super(ContourFinder, self).__init__(self.finder_fn, [mode_par])

 def finder_fn(self, bin_im, mode):
 if mode == "outer":
 cont_ret = cv2.findContours(bin_im,
 cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)
 return cont_ret[-2]
 else:
 cont_ret = cv2.findContours(bin_im,
 cv2.RETR_CCOMP,
 cv2.CHAIN_APPROX_SIMPLE)
 # cont_ret is
 # * contours, hierarchy for opencv >4.0
 # * im, contours, hierarchy for opencv <=3.4

 contours = cont_ret[-2]
 hierarchy = cont_ret[-1][0]

 if mode == 'all':
 return contours
 else:
 holes = []
 nonholes = []
 inner = []

 i = 0

 nonholes_i = []

 # first hierarchy is the nonholes
 # parse through them
 while i >= 0:
 head = contours[i]
 nonholes.append(head)
 nonholes_i.append(i)

 next_i, prev_i, child_i, parent_i = hierarchy[i]

 if child_i < 0:
 inner.append(head)

 i = next_i # index of next contour on same hierarchy level

 if mode == "holes":
 # rest should be holes
 # ie. all which are not nonholes
 # list of holes is the contour list withouth the ones
 # specified by nonholes index list
 holes = np.delete(contours, nonholes_i, axis=0)
 return holes
 elif mode == "non-holes":
 return nonholes
 elif mode == "inner":
 return inner
 else:
 raise NotImplementedError(
 "Unsupported contour finder mode %s" % mode)

[docs]class FeatureFormFilter(FeatureFilter):
 """It analyzes the contours and filters them using given criteria:

 - the enclosed area must be smaller (i.e. contain fewer pixels) than
 `minimal_area`
 - it solidity, i.e. the ratio of the area of the contour and its convex
 hull must be below a given value
 - if `remove_on_edge` is `True`, contours that touch the border of the
 image are filtered out

 """

 def __init__(self, size, solidity, remove_on_edge):
 pars = [NumericRangeParameter("minimal_area", size, 0, 10000),
 NumericRangeParameter("solidity_limit",
 solidity, 0, 1, step=0.01, type_=float),
 BoolParameter("remove_on_edge", remove_on_edge)]
 super(FeatureFormFilter, self).__init__(self.filter_fn, pars)

 def solidity(self, c):
 try:
 return cv2.contourArea(c)/cv2.contourArea(cv2.convexHull(c))
 except ZeroDivisionError:
 return 0

 def filter_fn(self,
 contours,
 image_shape,
 minimal_area,
 solidity_limit,
 remove_on_edge):

 def valid_contour(c):
 valid_area = cv2.contourArea(c) > minimal_area
 valid_solidity = self.solidity(c) > solidity_limit
 valid_on_edge = not remove_on_edge or \
 self.is_off_border(c, image_shape)
 return (valid_area and
 valid_solidity and
 valid_on_edge)

 return [c for c in contours if valid_contour(c)]

[docs] def is_off_border(self, contour, image_shape):
 """
 this function checks if a contour is touching the border
 of an image shaped like image_shape
 """
 bb_x, bb_y, bb_w, bb_h = cv2.boundingRect(contour)
 maxh = image_shape[0]
 maxw = image_shape[1]

 xMin = 0
 yMin = 0
 xMax = maxw - 1
 yMax = maxh - 1

 if any([bb_x <= xMin,
 bb_y <= yMin,
 bb_x+bb_w >= xMax,
 bb_y+bb_h >= yMax]):
 return False
 else:
 return True

 def draw_contours(self, image, contours):
 background = cv2.cvtColor(image.copy(), cv2.COLOR_GRAY2RGB)
 return draw_contours(background, contours)

def draw_contours(color_image, contours, color=(0, 255, 0), thickness=1):
 return cv2.drawContours(color_image, contours, -1, color, thickness)

def crop_to_contour(image, contours):
 x, y, w, h = cv2.boundingRect(contours)

 return image[y:y+h, x:x+w]

 Source code for spotlob.process_steps

"""For every function of `Spim` that returns another `Spim` at
a further stage, there is a subclass of `SpotlobProcessStep`,
that can be used as super class for an concrete implementation
of that step. The return type of a `SpotlobProcessStep.apply`
call is different depending on the type of process. The Spim
internally passes the modified data to the new Spim created
through the process.
"""

from .spim import Spim, SpimStage
from .process import SpotlobProcessStep

[docs]class Reader(SpotlobProcessStep):
 """A reader loads the image data from storage into memory.
 `apply` returns an image"""
 input_stage = SpimStage.new

[docs]class Converter(SpotlobProcessStep):
 """A converter converts a color image to a greyscale image.
 `apply` returns a greyscale image
 """
 input_stage = SpimStage.loaded

[docs] def preview(self, spim):
 input = spim.get_at_stage(self.input_stage).image
 return self.apply(input)

[docs]class Preprocessor(SpotlobProcessStep):
 """Preprocessing is applied onto a grey image to prepare for
 binarization, for example by cleaning the image from unwanted
 features.
 `apply` returns a greyscale image
 """
 input_stage = SpimStage.converted

[docs] def preview(self, spim):
 input = spim.get_at_stage(self.input_stage).image
 return self.apply(input)

[docs]class Binarization(SpotlobProcessStep):
 """Turns a greyscale image into a black-and-white or binary image.
 `apply` returns a greyscale image
 """
 input_stage = SpimStage.preprocessed

[docs] def preview(self, spim):
 input = spim.get_at_stage(self.input_stage).image
 binim = self.apply(input)
 # bin_masked = ~np.ma.masked_array(binim, binim == 0)
 # return bin_masked
 return binim

[docs]class Postprocessor(SpotlobProcessStep):
 """Postprocessing is done on a binary image to facilitate the
 detection.
 `apply` returns a greyscale image
 """
 input_stage = SpimStage.binarized

[docs] def preview(self, spim):
 input = spim.get_at_stage(self.input_stage).image
 return self.apply(input)

[docs]class FeatureFinder(SpotlobProcessStep):
 """The FeatureFinder tries to find contours in a binary image.

 `apply` returns contours
 """
 input_stage = SpimStage.postprocessed

[docs] def preview(self, spim):
 # do nothing, get at stage before feature find
 return spim.get_at_stage(self.input_stage).image

[docs]class FeatureFilter(SpotlobProcessStep):
 """The FeatureFilter can reduce the number of detected features
 by analyzing them.

 `apply` returns contours
 """
 input_stage = SpimStage.features_extracted

[docs] def preview(self, spim):
 input_ = spim.get_at_stage(self.input_stage)
 new_contours = self.apply(input_.metadata["contours"],
 input_.metadata["image_shape"])

 background = spim.get_at_stage(SpimStage.binarized).image
 return self.draw_contours(background, new_contours)

 def draw_contours(self, image, contours):
 raise NotImplementedError("abstract: to be implemented by subclass")

[docs]class Analysis(SpotlobProcessStep):
 """An Analysis class evaluates the metadata (including contours) and
 yields its results as a dataframe.

 `apply` returns :class:`~pandas.DataFrame`"""
 input_stage = SpimStage.features_filtered

 def __init__(self,
 function,
 parameters,
 add_to_register=True,
 extended_output=True):
 """Abstract analysis process step.

 Parameters

 function : callable
 function that performs the analysis. As first argument it must
 take the metadata dict and further arguments must match the
 Parameters of the SpotlobParameterSet.
 Must return a pandas.Dataframe
 parameters : SpotlobParameterSet
 Parameters of this process steps
 add_to_register : bool, optional
 wether this should automatically be added to the list of known
 processes, by default True
 extended_output : bool, optional
 if the output of this Analysis should contain as much data as
 possible. If False, only most important results are returned.
 By default True
 """
 self.extended_output = extended_output
 super(Analysis, self).__init__(function, parameters, add_to_register)

[docs] def preview(self, spim):
 df = self.apply(spim.metadata)

 im = spim.get_at_stage(SpimStage.loaded).image
 return self.draw_results(im, df)

 def draw_results(self, image, dataframe, crop_to_contours=False):
 raise NotImplementedError("abstract: to be implemented by subclass")

 Source code for spotlob.spim

"""A Spim is the object holding the images and metadata.
It has methods, that return a Spim of the next stage.
For example, a blank, empty Spim can be created and is then
in the stage `SpimStage.new`. It contains only the information
where to find the image file. If `Spim.read(Writer)` is called,
a new Spim is returned, which contains the image data and is at
stage `SpimStage.loaded`.

Here is a list of the stages that a Spim can be in and in between,
the methods that return a Spim of the next stage.

.. graphviz::

 strict digraph {
 node [shape=box, width=2]

 0 [label="new", target="_top"];
 1 [label="loaded"];
 2 [label="converted"];
 3 [label="preprocessed", below=2];
 4 [label="binarized", below=1];
 5 [label="postprocessed", below=0];
 6 [label="features_extracted"];
 7 [label="features_filtered"];
 8 [label="analyzed"];
 9 [label="stored"];

 {rank=same;
 0 -> 1 [label="read"];
 1 -> 2 [label="convert"];
 }
 2 -> 3 [label="preprocess"];
 {rank=same;
 4 -> 3 [label="binarize", dir="back"];
 5 -> 4 [label="postprocess", dir="back"];
 }
 5 -> 6 [label="extract_features"];
 {rank=same;
 6 -> 7 [label="filter_features"];
 7 -> 8 [label="analyze"];
 }
 8 -> 9 [label="store"];
 }

With every step, information is collected. A spim at a later stage
does not duplicate the image data from former stages. However, if this
data is still needed, it can contain a reference to its predecessors.
"""

import pandas

[docs]class SpimStage(object):
 """Enumeration of the stages that a Spim can go through"""

 new = 0
 loaded = 1
 converted = 2
 preprocessed = 3
 binarized = 4
 postprocessed = 5
 features_extracted = 6
 features_filtered = 7
 analyzed = 8
 stored = 9

[docs]class Spim(object):
 """Spotlob image item"""
 # TODO: describe nature of Spim, immutable concept

 def __init__(self, image, metadata, stage, cached, predecessors):
 """A Spim is a **Spotlob image item**, an object representing an image
 and the metadata that is collected along the process through a
 pipeline.

 Parameters

 image : numpy array
 an image
 metadata : dict
 the data desribing the image and containing results
 stage : SpimStage
 the stage along the pipeline the image has passed
 cached : bool
 if this is true, a reference to predecessors of this Spim are
 stored and they are kept in memory. This is required if a process
 step is to be repeated
 predecessors : dict(SpimStage, Spim)
 a registry of predecessors of the current spim, stored alongside
 the stage they are in
 """

 self._image = image
 self.metadata = metadata
 self.stage = stage
 self.cached = cached
 self.predecessors = predecessors

 if image is not None:
 self.metadata.update({"image_shape": image.shape})

[docs] @classmethod
 def from_file(cls, image_filepath, cached=False):
 """Create a Spim object from an image file. The path is stored in the
 Spim object, but the image is not yet loaded.

 Parameters

 image_filepath : str
 Path to an image file. The image type must be understood by the
 reader that is given when the `read`-function is called. If an
 invalid image type is given at this stage, it will not be
 recognized
 cached : bool, optional
 If the spim is to be cached, a reference to predecessors will be
 kept and not be deleted by the garbage collector. This allows to
 go back to an earlier stage after applying processes, but is more
 memory consuming. (the default is False)

 Returns

 Spim
 An empty Spim at SpimStage.new, that does not contain any data
 except the filepath
 """

 md = {"filepath": image_filepath}
 return Spim(None,
 md,
 SpimStage.new,
 cached=cached,
 predecessors=dict())

 @property
 def image(self):
 """Gives the image contained in this Spim or in the latest
 predecessor, that has an image

 Raises

 Exception
 Exception is raised if no image is present, most likely
 because it has not been cached

 Returns

 numpy.array
 latest image
 """

 if not (self._image is None):
 return self._image
 elif self.cached:
 return self.predecessor_image()
 else:
 raise Exception("image not found, has not been cached")

 def predecessor_image(self):
 predecessor_stages = self.predecessors.keys()
 predecessor_stages = sorted(predecessor_stages)

 for i in predecessor_stages[::-1]:
 p = self.predecessors[i]
 if not (p.image is None):
 return p.image
 raise Exception("no image found")

 def read(self, reader):
 im, metadata = reader.apply(self.metadata["filepath"])
 metadata.update(self.metadata)
 metadata.update({"image_shape": im.shape})
 return Spim(im,
 metadata,
 SpimStage.loaded,
 self.cached,
 self._predecessors_and_self())

 def apply_process(self, process):
 assert self.stage == process.input_stage
 im = process.apply(self.image)
 return Spim(im,
 self.metadata.copy(),
 self.stage + 1,
 self.cached,
 self._predecessors_and_self())

 def convert(self, converter):
 return self.apply_process(converter)

 def preprocess(self, preprocessor):
 return self.apply_process(preprocessor)

 def binarize(self, binarizer):
 return self.apply_process(binarizer)

 def postprocess(self, postprocessor):
 return self.apply_process(postprocessor)

 def extract_features(self, feature_extractor):
 contours = feature_extractor.apply(self.image)
 new_metadata = self.metadata.copy()
 new_metadata.update({"contours": contours})
 newspim = Spim(None, new_metadata, SpimStage.features_extracted,
 self.cached, self._predecessors_and_self())
 return newspim

 def filter_features(self, feature_filter):
 filtered_contours = feature_filter.apply(self.metadata["contours"],
 self.metadata["image_shape"])
 metadata = self.metadata.copy()
 metadata["contours"] = filtered_contours
 return Spim(None,
 metadata,
 SpimStage.features_filtered,
 self.cached,
 self._predecessors_and_self())

 def analyze(self, analysis):
 results = analysis.apply(self.metadata)
 metadata = self.metadata.copy()
 metadata["results"] = results
 return Spim(None,
 metadata,
 SpimStage.analyzed,
 self.cached,
 self._predecessors_and_self())

 def store(self, writer):
 assert self.stage == SpimStage.analyzed

 metadata = self.metadata.copy()

 contours = metadata["contours"]

 fresh_image = self.get_at_stage(SpimStage.loaded).image
 image_path = writer.store_image(fresh_image, contours)
 data_path = writer.store_data(self.get_data())

 metadata["output_image_filepath"] = image_path
 metadata["output_data_path"] = data_path

 return Spim(None,
 metadata,
 SpimStage.stored,
 self.cached,
 self._predecessors_and_self())

[docs] def func_at_stage(self, spimstage):
 """The method like `self.read()`, `self.convert()`,... that can
 be safely called at the given stage

 Parameters

 spimstage : int
 SpimStage that the requested method corresponds to

 Returns

 callable
 the function, that can be applied the given stage
 """

 # TODO: the static map of functions should be defined elsewhere
 functions = [self.read,
 self.convert,
 self.preprocess,
 self.binarize,
 self.postprocess,
 self.extract_features,
 self.filter_features,
 self.analyze,
 self.store]
 return functions[spimstage]

[docs] def do_process_at_stage(self, process):
 """Apply the given process at at this Spim if the process fits
 this stage or at a predecessor of this Spim that fits the
 process' input stage

 Parameters

 process : SpotlobProcessStep
 Process to apply

 Returns

 Spim
 The Spim that results from the process being applied. It is
 in stage `process.input_stage + 1`
 """
 return self.func_at_stage(process.input_stage)(process)

 def _predecessors_and_self(self):
 if self.cached:
 outd = dict()
 for p_stage, p_spim in self.predecessors.items():
 if p_stage < self.stage:
 outd.update({p_stage: p_spim})
 outd.update({self.stage: self})
 return outd
 else:
 # TODO: should this return self
 return dict()

[docs] def get_at_stage(self, spimstage):
 """Get the Spim at a given stage. This returns a predecessor if it has
 been chached

 Parameters

 spimstage : int
 That the returned Spim should be at

 Raises

 Exception
 If there is no predecessor at the requested stage, for example if
 Spim has not been cached

 Returns

 Spim
 The Spim at the requested Stage
 """

 if spimstage == self.stage:
 return self
 else:
 try:
 return self.predecessors[spimstage]
 except KeyError:
 # TODO: check if cached = False, then predecessor cannot exist
 msg = "Spim has no predecessor at stage %s." % spimstage
 # TODO: more specific exception predecessor does not exist
 raise Exception(msg)

[docs] def get_data(self):
 """get all metadata and results as flat metadata

 RETURNS

 pandas.Dataframe
 all metadata including collected results
 """
 # TODO: better tests for get_data

 if "results" in self.metadata.keys():
 # results is a dataframe
 # flatten to one dataframe

 md_copy = self.metadata.copy()

 results = md_copy.pop("results")
 results["filepath"] = md_copy["filepath"]

 # TODO: find a way to include contours output in get_data
 # drop contours
 _ = md_copy.pop("contours")

 md = pandas.Series(md_copy).to_frame().T

 return results.merge(md, on="filepath")
 else:
 return pandas.Series(self.metadata).to_frame().T

 def __repr__(self):
 return "<Spim instance %s at stage %s>" % (id(self), self.stage)

 _static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/demo.gif
spotiob. n

con Gr v
invert
kemelsize 3
threshold 100
minim:
solidity_limit 098 [N

Evaluate

nav.xhtml

 Table of Contents

 		
 Spotlob

 		
 Basic workflow

 		
 1. Tweak parameters using the notebook

 		
 2. Store and reload a pipeline

 		
 3. Batch processing

 		
 Priciple of operation

 		
 The Spim and its stages

 		
 The processes

 		
 The spotlob pipeline

 		
 Extending functionality

 		
 Example using a decorator

 		
 Structures

 		
 Spim

 		
 Process

 		
 Process step implementations

 		
 Pipeline

 		
 Parameters

 		
 Batch processing

 		
 Default Pipeline

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

